(19) For previous stereochemical interpretations of lanosterol biosynthesis, see G. Stork and A. W. Burgstahler, J. Am. Chem. Soc., 77, 5068 (1955); A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, Melv. Chim. Acta, 38, 1890 (1955).
(20) In many epoxide cyclization experiments, significant amounts of acyclic ketone resulting from simple rearrangement are formed, despite the greatly enhanced reaction rate due to the neighboring π bond. ${ }^{6}$ As an explanation for this and other cyclization results, there may be generated with participation some type of partially cyclized intermediate cation common to all processes, reacting with external nucleophiles (or bases) to give acyclic and monocyclic material as well as with further double bonds to give polycyclics. As a particularly attractive feature, this hypothesis (proposed by Professor J. Brauman) accounts both for the rate acceleration in production of noncyclized material as well as the lack of extra acceleration in the rate of polycycle formation.
E. E. van Tamelen,* D. R. James

Department of Chemistry, Stanford University
Stanford, California 94305
Received April 5, 1976

Structural and Dynamic Stereochemistry of $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{\mathbf{2 6}}{ }^{4-}$

 Sir:Rational synthesis of novel, large polyoxoanions is virtually impossible due to a scarcity of experimental data from which principles governing reaction mechanism may be inferred. We report here the results of a dynamic ${ }^{17} \mathrm{O}$ NMR solution study and a solid-state x-ray diffraction study which, for the first time, provide experimental evidence for a simple structurereactivity relationship and its more general implications,

When ${ }^{17} \mathrm{O}$ enriched $\alpha-\left[\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{4} \mathrm{Mo}_{8} \mathrm{O}_{26}(1)$ is dissolved in acetonitrile containing a small a mount of water, ${ }^{17} \mathrm{O}$ NMR spectra shown in Figure 1c-e are obtained as the temperature is lowered. Since infrared studies ${ }^{1}$ have established an $\alpha-\beta \mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ equilibrium in acetonitrile and x-ray diffraction studies ${ }^{2,3}$ have determined the structures of α - and $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ (see Figure la, b), the resonances may be assigned by comparison with the spectrum of ${ }^{17} \mathrm{O}$ enriched β -$\left[\left(\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{3} \mathrm{KMo}_{8} \mathrm{O}_{26} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2) in acetonitrile, shown in Figure If, using the ${ }^{17} \mathrm{O}$ NMR chemical shift scale described elsewhere. ${ }^{4}$ Although the spectra shown in Figure 1c-e are not of sufficient quality to allow quantitative interpretation, several distinctive features may be noted: (1) as the temperature increases, resonances for O_{B} and O_{C} in $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ broaden significantly, while resonances for O_{A} and O_{D} do not, (2) the $\mathrm{H}_{2} \mathrm{O}$ triplet is observed at $30^{\circ} \mathrm{C}$, and (3) the O_{B} resonance broadens more rapidly than the O_{C} resonance as the temperature increases. From these features, one may conclude that (I) the O_{B} and O_{C} resonances broadening is due to a nuclear site exchange process, not quadrupolar broadening, (2) the site exchange process does not involve water, and (3) the exchange process involves exchange between the O_{B} site (two oxygens) and the O_{C} site (six oxygens). A simple mechanism consistent with this site exchange scheme is reorientation of the tetrahedral molybdate unit within the $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ structure, either inter- or intramolecularly. Such a mechanism involves breaking and subsequent re-forming of bonds between O_{C} and the octahedrally coordinated molybdenums $\left(\mathrm{Mo}_{1}\right)$ in $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$, and the rapid reaction rate implies their being weak bonds.

Detailed examination of the $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ structure, obtained from single crystals of $\alpha-\left[\left(\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3^{-}}\right.$ $\mathrm{P}]_{4} \mathrm{Mo}_{8} \mathrm{O}_{26} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{CN}(3),{ }^{5}$ confirms the weakness of these bonds. Although the $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ ion in 3 possesses only inversion symmetry, deviations from idealized $D_{3 d}$ symmetry are slight (see Table I). Three features of the structure indicate the weakness of the $\mathrm{Mo}_{0}-\mathrm{O}_{\mathrm{C}}$ bonds and the potential lability of the $\mathrm{MoO}_{4}{ }^{2-}$ unit within the $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ ion. First, the average $\mathrm{Mo}_{1}-\mathrm{O}_{\mathrm{C}}$ distance of $2.425 \AA$ implies a bond order ${ }^{6}$ of less than 0.1 . Second, the significant variation of $\mathrm{Mo}_{1}-\mathrm{O}_{\mathrm{C}}$ distances, ranging from 2.369 (3) to 2.444 (3) \AA, reflects the

Figure 1, (a) ORTEP drawing of $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ as observed in 3. All atoms are represented by thermal vibration ellipsoids of 50% probability. Assuming idealized $D_{3 d}$ symmetry, nonequivalent oxygen atoms are labeled with letters and nonequivalent molybdenum atoms are labeled with numerals. (b) $\mathrm{C}_{2 \hbar}$ idealized view of $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$, where small circles represent molybdenum atoms, and large circles represent oxygen atoms. Nonequivalent oxygen atoms are labeled with letters. All molybdenum coordination polyhedra are drawn as idealized octahedra. (c)-(e) ${ }^{17} \mathrm{O} \mathrm{FT}$ NMR spectra of 25 atom $\%{ }^{17} \mathrm{O}$ enriched $\alpha-\left[\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{4} \mathrm{Mo}_{8} \mathrm{O}_{26}(1)$ in hydrated acetonitrile, $[\mathrm{Mo}]=0.16 \mathrm{M}$. (f) ${ }^{17} \mathrm{O} \mathrm{FT}$ NMR spectrum of 34 atom $\%{ }^{17} \mathrm{O}$ enriched $\beta-\left[\left(n \cdot \mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{3} \mathrm{KMo}_{8} \mathrm{O}_{26} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2) in acetonitrile, [Mo] $=0.05 \mathrm{M}$. Pure water at $30^{\circ} \mathrm{C}$ is assigned a chemical shift of 0 ppm on the scale shown at the bottom of the figure.
ease with which these bonds may be stretched. ${ }^{7}$ Finally, the average Mo॥-O distance within the tetrahedral coordination sphere is $1.764 \AA$, which agrees, within standard deviations, with the average of $1.772 \AA$ found in $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} .^{8}$ Thus the $\mathrm{MoO}_{4}{ }^{2-}$ unit could be reoriented with only a slight deformation of its geometry. As a result of these three considerations, $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ may be accurately represented by the

Table I. Average Molybdenum-Oxygen Distances for the $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ ion in $\alpha-\left[\left(n-\mathrm{C}_{3} \mathrm{H}_{7}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{4} \mathrm{Mo}_{8} \mathrm{O}_{26} \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$

Type a	Distance, ${ }^{b} \AA$
$\mathrm{Mo}_{1}-\mathrm{O}_{\mathrm{A}}$	$1.696(3,2,3)$
$\mathrm{Mo}_{1}-\mathrm{O}_{\mathrm{D}}$	$1.904(3,4,9)$
$\mathrm{Mo}_{1}-\mathrm{O}_{\mathrm{C}}$	$2.425(3,19,56)$
$\mathrm{Mo}_{11}-\mathrm{O}_{\mathrm{C}}$	$1.783(3,3,5)$
$\mathrm{Mo}_{11}-\mathrm{O}_{\mathrm{B}}$	$1.708(3)$

${ }^{a}$ See Figure la for labeling scheme. ${ }^{b}$ The first number in parentheses following an average value is the root mean squared value of the estimated standard deviation for an individual datum. The second and third numbers, when given, are the mean and maximum deviations from the averaged value, respectively.
formula $\left(\mathrm{MoO}_{4}{ }^{2-}\right)_{2}\left(\mathrm{Mo}_{6} \mathrm{O}_{18}\right)$ which characterizes the weak interactions between the two $\mathrm{MoO}_{4}{ }^{2-}$ ions and a ring of six distorted MoO_{4} tetrahedra sharing corners. ${ }^{9}$ This representation is also in accord with the existence of stable rings $\left(\mathrm{MoO}_{3}\right)_{n}, n=3,4$, and 5 , studied in the vapor phase by Berkowitz et al.

The simple relationship between kinetic lability and low bond order established here is consistent with previous exchange studies ${ }^{12}$ and may be extended in an attempt to predict the kinetic behavior of other polyoxomolybdates. Several heteropolyanions may be viewed as structurally related to the $\alpha-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ ion and represented as $\left(\mathrm{AsO}_{4}{ }^{3-}\right)_{2}\left(\mathrm{Mo}_{6} \mathrm{O}_{18}\right),{ }^{13}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AsO}_{3}{ }^{2-}\right)_{2}\left(\mathrm{Mo}_{6} \mathrm{O}_{18}\right){ }^{13} \quad\left(\mathrm{PO}_{4}{ }^{3-}\right)_{2}\left(\mathrm{Mo}_{5} \mathrm{O}_{1} \cdot\right),{ }^{14}$ $\left(\mathrm{CH}_{3} \mathrm{PO}_{3}{ }^{-}\right)_{2}\left(\mathrm{Mo}_{5} \mathrm{O}_{15}\right),{ }^{15}$ and $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}^{-}\right)\left(\mathrm{OH}^{-}\right)$$\left(\mathrm{Mo}_{4} \mathrm{O}_{12}\right)$) ${ }^{16}$ which in turn implies potential lability with respect to dissociation of $\mathrm{AsO}_{4}{ }^{3-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AsO}_{3}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}$, $\mathrm{CH}_{3} \mathrm{PO}_{3}{ }^{2-}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}^{-}$, respectively. One may speculate further into the more general case where a large polyoxomolybdate cluster may be dissected into smaller clusters by breaking only weak bonds. For example, $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ may be accurately represented by $\left(\left(\mathrm{O}^{2-}\right)\left(\mathrm{Mo}_{4} \mathrm{O}_{12}\right)_{2}\right.$ since the β $\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ cluster can be dissected into two $\left(\mathrm{O}^{2-}\right)\left(\mathrm{Mo}_{4} \mathrm{O}_{12}\right)$ subunits by breaking only bonds whose lengths exceed $2,22 \AA^{17}$ and hence have bond orders less than 0.2. ${ }^{6}$ This fact points toward a mechanistic pathway for the reaction of $\left(\left(\mathrm{O}^{2-}\right)\right.$ $\left(\mathrm{Mo}_{4} \mathrm{O}_{12}\right)_{2}$ with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2} \mathrm{H}$ to form the $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{AsO}_{2}{ }^{-}\right)$-$\left(\mathrm{OH}^{-}\right)\left(\mathrm{Mo}_{4} \mathrm{O}_{12}\right)$ ion mentioned above. We are currently attempting to verify some of these speculations using dynamic ${ }^{17}$ O NMR techniques.

Acknowledgments. V.W.D. and W.G.K, acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. Also, W.G.K. acknowledges the National Science Foundation for financial support and V.W.D. acknowledges a generous grant of computing time from the University of Nebraska Computing center. W.G.K. and W.S. are grateful to Mr. I. Miura for obtaining NMR spectra.

References and Notes

(1) W. G. Klemperer and W. Shum, J. Am. Chem. Soc., 98, 8291 (1976).
(2) For the structure of $\alpha-\mathrm{MO}_{8} \mathrm{O}_{26}{ }^{4-}$ see: (a) J. Fuchs and H. Hartl, Angew. Chem., Int. Ed. Engl., 15, 375 (1976); (b) M. F. Fredrich, V. W. Day, W. Shum, and W. G. Klemperer, Am. Cryst. Assoc. Summer Meeting, 1976, paper M5.
(3) For the structure of $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ see (a) L. O. Atovmyan and O. N. Krasochka, J. Struct. Chem. (USSR), 13, 319 (1972); (b) l. Linqvist, Ark. Kemi, 2, 349 (1950).
(4) M. Filowitz, W. G. Klemperer, L. Messerle, and W. Shum, J. Am. Chem. Soc., 98, 2345 (1976). Although this reference considers complexes containing only octahedrally coordinated molybdenum, assignments of resonances to O_{g} and O_{C} in the present work are made using analogous reasoning.
(5) Compound 3 crystallizes in the centrosymmetric monoclinic space group, $C_{2 /}-C_{2 h}{ }^{6}$ (No. 15) with $a=28.096$ (6) $A, b=14.313$ (2) $A, c=27.116$ (5) $A, \beta=121.32(1)^{\circ}$, and $Z=4$ (formula units as given above). Diffracted Intensities were measured on a spherical crystal having $\mu \mathrm{r}=0.28$ for 12892 independent reflections having $2 \theta_{\text {MoK } \bar{\alpha}}<59^{\circ}$ (the equivalent of 1.2 limiting $\mathrm{Cu} \mathrm{K}_{\bar{\alpha}}$ spheres) on a computer-controlled four-circle Syntex
P_{1} autodiffractometer using Nb-filtered Mo Kar radiation and $\theta-\mathbf{2} \theta$ scans. The four molybdenum atoms of the asymmetric unit were located using direct methods (MULTAN) and the remaining atoms by standard difference Fourier techniques. The resuiting structural parameters have been refined to convergence ($R=0.031$ for 4611 independent reflections having $2 \theta_{\text {Mok }}$ $<43^{\circ}$ (the equivalent of 0.50 limiting Cu Kax sphere) and $1>3 \theta(1)$) using unit-weighted full-matrix least-squares techniques with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. Refinement is continuing with those reflections having $2 \theta_{\text {MoK }}<59^{\circ}$.
(6) F. A. Schroeder, Acta Crystallogr., Sect. B, 31, 2294 (1975).
(7) In ref 2a an analogous but far greater variation is noted. In view of the lower precision obtained in the study reported in ref $2 a$, it is difficult to assess the significance of this greater variation.
(8) K. Matsumoto, A. Kobayashi, and Y. Sasaki, Bull. Chem. Soc. Jpn., 48, 1009 (1975).
(9) Kihlborg ${ }^{10}$ in his study of MoO_{3} was apparently the first to note that certain molybdate structures containing octahedrally coordinated molybdenum with marked off-center displacement toward an octahedral edge may be best viewed as containing tetrahedral units. In the case of MoO_{3}, he described infinite chains of corner sharing, distorted MOO_{4} tetrahedra which are only weakly associated to yield six-coordinate molybdenums.
(10) L. Kihlborg, Ark. Kemi, 21, 357 (1963).
(11) J. Berkowitz, M. G. Inghram, and W. A. Chupka, J. Chem. Phys., 26, 842 (1957).
(12) We refer here to the pioneering work of Baker and Tsigdinos on oxygen and chromium exchange in $\left(\mathrm{Cr}(\mathrm{OH})_{6}{ }^{3-}\right)\left(\mathrm{MO}_{6} \mathrm{O}_{18}\right)$: L. C. W. Baker in "Advances in the Chemistry of Coordination Compounds", S. Kirchner, Ed., MacMillan, New York, N.Y., 1961, and references therein.
(13) M. Filowitz and W. G. Klemperer, J. Chem. Soc., Chem. Commun., 233 (1976).
(14) R. Strandberg, Acta Chem. Scand., 27, 1004 (1973).
(15) J. K. Stalick and C. O. Quicksall, Inorg. Chem., 15, 1577 (1976).
(16) K. Barkigia, L. M. Raikovic, M. T. Pope, and C. O. Quicksall, J. Am. Chem. Soc., 97, 4146 (1975).
(17) For approximate bond distances in $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$, see ref 3 a
(18) Camille and Henry Dreyfus Teacher-Scholar.

V. W. Day,* ${ }^{18}$ M. F. Fredrich
Department of Chemistry, University of Nebraska
Lincoln, Nebraska 68508

W. G. Klemperer, * W. Shum
Department of Chemistry. Columbia University New York, New York 10027
Received October 18, 1976

Intercalate of Xenon Tetrafluoride with Graphite

Sir:
The compounds xenon hexafluoride ${ }^{1}$ and xenon oxide tetrafluoride ${ }^{2}$ have previously been shown to intercalate in graphite. While these compounds react directly with graphite, xenon difluoride reacts only in the presence of hydrogen fluoride to yield an intercalate of variable composition, ${ }^{3}$ We have now found that xenon tetrafluoride also forms intercalates with graphite.

Weighed quantities of graphite and excess XeF_{4} were allowed to react in preweighed Kel-F reaction vessels for periods of up to 3 weeks at room temperature. Reactions were generally complete after about 10 days, their slowness probably due to the low vapor pressure of XeF_{4}. The excess XeF_{4} was then pumped off until the reactor attained constant weight or did not lose weight at rates exceeding $2 \mathrm{mg} / \mathrm{h}$. Stoichiometries were calculated on the assumption that total weight gains were due to XeF_{4}. The latter were extrapolated back to zero pumping time.

The graphite used was either BDH powder or GTA grade Grafoil from Union Carbide Co. Considerable variations in stoichiometry were observed. The results with powder based on nine different reactions were $\mathrm{C}_{28.3 \pm 2.4} \mathrm{XeF}_{4}$, while those with Grafoil were $\mathrm{C}_{41 \pm 1} \mathrm{XeF}_{4}$ based on four experiments. In one case, however, a stoichiometry of $\mathrm{C}_{17.8} \mathrm{XeF}_{4}$ was obtained even after pumping for 27 h . Neither xenon nor carbon fluorides were liberated during the course of the reaction, and samples showed no visible changes. Fluorine analyses (Table I) correspond roughly to stoichiometries obtained from weight

